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1.0 Introduction 
Much of the extensive work on ontologies to date has focused on modeling and representing the 
world of objects.  The ontologies needed for our research supporting the management of 
hypotheses and evidence for analysts, however, must additionally model events and causality.  
Less work has been done on this aspect of ontologies.  In this paper we show how concepts from 
a causal ontology can be used directly as variables in Bayesian networks and how the attributes 
of the causal concepts can be used in matching evidence to the variables.  Moreover, subclass 
relationships in the ontology enable the extension of Bayesian reasoning over types. 
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2.0 Bayesian Reasoning for Evidence Management 
 
There are numerous real-world situations about which an analyst might wish to hypothesize and 
investigate, but it would be impractical to encode all of them explicitly in a support system for analysts.  
Instead, our approach is to represent fragments of situations and provide a mechanism for combining 
them into a wide variety of more complete ones [1,4].  The combination occurs dynamically as evidence 
about a situation becomes available or as an analyst revises or enters new hypotheses.  A situation 
fragment is represented as a Bayesian network with nodes for hypotheses, events, and evidence, and links 
for relating them.  Our ability to combine the fragments into more complete situation models is dependent 
on having a consistent terminology in which the fragments are described.  The focus of our work has been 
on (1) defining and representing the terminology, including terms of a domain and terms for evidence in 
that domain, (2) capturing new fragments from a variety of sources, and (3) incorporating the terminology 
and BN fragments into an integrated end-to-end tool, Magellan. 

 

2.1 Recognizing and Representing Situations 
Our objective is to be able to model and reason probabilistically about a wide variety of 
situations that might be of interest to analysts.  Unfortunately, there are too many of these to 
encode a priori within a system for analysts and they are too complex for most analysts to 
encode a posteriori complex real-world situations formally is unrealistic.  Instead, our approach 
is to represent small, common aspects of situations generically, and then provide a means to 
combine them dynamically into representations for real-world situations.  We term the small 
generic situation aspect a fragment, and choose a first-order representation for it. 

An example situation aspect that we might represent as a fragment would be a “suspicious 
transfer of money,” with variables corresponding to banks, organizations, deposits, withdrawals, 
and the transferring agent.  The fragment would be instantiated when evidence matched the 
variables, e.g., “a church attended by Syrians in Detroit deposited funds into a Michigan bank 
and the funds were transferred to a bank in Cairo.”  More precisely, each variable (node) in a 
fragment has a set of identifying attributes and their collective instantiated values specify a 
particular instance of a random variable.  Because the evidence might be uncertain, there would 
be probabilities associated with the instantiated fragment, and we would treat the instantiated 
fragment as a Bayesian network.  This is shown in Figure 1.  Note that the probability 
distribution described in the Bayesian network is a joint distribution on the nodes only, not on 
the nodes and the attributes. 
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Figure 1.  A commonly occurring part of a situation for a suspicious bank transfer of money, 

represented as an uninstantiated Bayesian network 
 

An advantage of using fragments of situations instead of more complete situations is that many 
more situations can be represented efficiently.  More precisely, N fragments can potentially be 
combined in N! ways to represent N! situations.  The combining is guided by available evidence.  
For example, three other situations that we might represent as fragments are “purchases of 
weapons,” “influencing an election,” and “bribing a politician.”  If evidence matched one of 
these, and the resulting instantiated fragment had one or more variables in common with the 
money fragment, then we would merge the fragments at the point of the common variables to 
produce a representation of a more complete situation, such as “transferring money to influence 
an election.”  Note that fragments can be merged only if the attributes of their common variables 
unify.  Also note that it is not necessary for the fragments to have any variables in common in 
order to merge them and represent larger situations.  As a result, the fragments could represent 
situations such as “bribing a politician to influence an election” and “purchasing weapons to 
influence an election.” Further, because each fragment could be instantiated multiple times, we 
could represent several different money transfers being used to purchase weapons.  Using 
Magellan, Bayesian reasoning would then be performed on whichever complex situation 
representation resulted from instantiating fragments with the available evidence and integrating 
those fragments.  The overall process for merging instantiated fragments and reasoning over 
them is shown in Figure 2. 
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Figure 2.  Fragments (templates) are merged based on the evidence that instantiates them 
 

2.2 Capturing the Terminology and Prior Knowledge for a New 
Domain 

A key activity of an intelligence analyst is to distinguish among competing hypotheses, 
determine the likelihood of their occurrence, and reduce the uncertainty in the outcomes of the 
hypotheses, upon which decision makers will then base their decisions.  Hypothesis outcomes1 
are related to observable evidence via direct or indirect causal relations, and therefore ontological 
support for analysts should involve cause-and-effect.  This is best supported by an ontology 
emphasizing events and their causal relationships, along with a hypothetical world of possible 
events, actions, and causes.  However, causal relationships must be interpreted in the context of 
the state of the real world—primarily consisting of objects and their physical properties—which 
can be represented in a conventional ontology, such as those that are part of SUMO.  The 
evidence for reasoning about hypotheses can come from a variety of sources, and the acquisition 
of evidence and events from these sources must also be represented, constituting a third kind of 
ontological representation describing the information sources.  Figure 3 depicts the three 
ontological models we use for (1) modeling situations and relating them to (2) background 
knowledge about the state of the world, and (3) acquiring evidence, all of which enables an 
assessment of the likelihood of the situations using Bayesian reasoning. 

 

 

 

                                                 
1 In our ontology, an outcome is thus an important and necessary property (“slot” in Protégé) for hypotheses and, 

indeed, for any concept that may be in a causal relationship.  The relationship is a link in a Bayesian network. 
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Figure 3.  An ontology for intelligence analysts has three related parts, corresponding to (1) the 
world of causality and hypothetical events needed for Bayesian reasoning, (2) the real world of 

things needed to model situations, and (3) the world of information and information sources 
needed for evidence management. 

 

A situation might represent an analyst’s query or, more generally, provide context and support 
for a hypothesis.  A situation would be comprised of one or more items of interest and each such 
item of interest has information provided by several information sources.  An item of interest 
may be specialized to Person, Organization, Event, or Place, and of particular interest would be 
items relating events involving people at significant places. Information sources can be maps, 
images, reports video, audio, email, websites, and database records.  Typically, an item of 
interest would have many information sources describing aspects of that item, for example a 
meeting held by members of a suspected terrorist organization might be described by audio, 
video, and email surveillance or reports by insiders. Our tool, Magellan, uses Protégé (see Figure 
4) for capturing the ontologies, RDF for representing the terminology, XMLBIF for representing 
the causal relationships, and RDF and SPARQL (future) for requesting evidence from 
information sources.  It also makes use of logical, non-probabilistic models, as shown in Figure 4 
and described next. 

2.3 Situation Fragments Represented by Logical Models 

Our objective is to produce models of systems and situations that will be sufficiently accurate 
that they can be used—where appropriate—to predict future states, to understand operations, to 
illuminate the factors relevant to decisions, and to control behaviors. We have realized that some 
knowledge is more easily and naturally represented in the form of statements in a logic language 
and some is more naturally represented in a Bayesian-network formalism. For example, logic is 
best for expressing 

• Class-subclass statements, such as “C4 is an explosive” 
• Part-whole statements, such as “triggers are part of IEDs” 
• Definitional statements, such as “triangles have three sides” 
• Temporal statements, such as “3:00 p.m. occurs before 4:00 p.m.” 
• Spatial statements, such as “Irbil is located in Kurdistan” 

Other knowledge is probabilistic, such as 
• “Terrorist cell X planned the bombing” 
• “Suspect Y met with cell leader Z in Syria last March” 

Our objective has been to take advantage of the strengths of each formalism while combining 
them into a single coherent system. 
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Figure 4.  The BALER framework for integrating logical models with probabilistic models, with an 

ontology developed in Protégé providing a consistent vocabulary for all domain concepts 
 

An example of the situations that can be represented by such an integrated system is shown in 
Figure 5.  This system would help analysts confront problems of credibility, relevance, 
contradictory evidence, and pervasive uncertainty, using 

• A unique combination of the power of logical and probabilistic reasoning 
• Numerical analysis of competing hypotheses 
• Automated linking of relevant evidence 
• Automated propagation of uncertainty values: good arguments from uncertain data still 

add strength to a conclusion 
• Robust reasoning over contradictory information allows analysts to exploit maximal 

amounts of information 
• A provision for analysts to enter their own knowledge directly, allowing the system to 

learn from its users 
• The use of probabilities to quantify belief in hypotheses to support optimal decision 

making according to the principle of maximum expected utility. 
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Figure 5.  An example illustrating the need for both Bayesian and logical reasoning 

 

Formal logical tools are able to provide some amount of reasoning support for information 
analysis, but are unable to represent uncertainty. Bayesian network tools represent probabilistic 
and causal information, but in the worst case they scale as poorly as some formal logical systems 
and require specialized expertise to use effectively. The framework (BALER) we have 
developed for intelligence reasoning incorporates the advantages of both Bayesian and logical 
systems [7]. The framework includes a formal mechanism for the conversion of automatically 
generated natural deduction proof trees into Bayesian networks. This is indicated by the 
information flow shown in Figure 4.  We have proven that the merging of such networks with 
domain-specific causal models forms a consistent Bayesian network with correct values for the 
formulas derived in the proof. In particular, we show that when the premises of a proof are true, 
hard evidential update (see Section 2.5) forces the conclusions of the proof to be true with 
probability one, regardless of any dependencies and prior probability values assumed for the 
causal model. 

2.4 An Extended Example 
We provide an extended example of using the integrated logical and probabilistic reasoning 
system. Since the propositional theory that formalizes the example includes at least one non-
Horn clause, i.e., at least one clause that includes two non-negative literals, the theory cannot be 
handled correctly by Prolog or by forward chaining rule-based systems such as JESS or CLIPS. 
The example formalizes the following story: my cup contains either coffee (C) or tea (T). Coffee 
is a brown liquid (B). Tea is a brown liquid. Thus it can be concluded that my cup contains a 
brown liquid. The axioms in the knowledge base that formalizes the story are: 

 
  



8 

 

We want to show B. Note that the theory allows for both tea and coffee to be in my cup at the 
same time. A natural deduction proof for B is given in Figure 6. The proof consists of three 
steps: two →-elimination steps and one V-elimination step. The →-elimination steps require one 
assumption each, namely C and T. The V-elimination step, which corresponds to a case analysis 
step, discharges the assumptions made in the →-elimination steps.  

 
Figure 6.  An example illustrating the need for both Bayesian and logical reasoning 

 
An issue that had to be resolved is that of representing the proof in a convenient machine-
readable form. Due to the prevalence of XML, we decided to use a variation of the XML format 
used in the Vampire theorem prover [17]. Since Vampire is a resolution theorem prover, while 
we use natural deduction, we modified the schema by allowing for an explicit representation of 
the rule used and of the context, defined as the set of assumptions, used in a proof step.  

 
Figure 7. This proof tree makes contexts explicit. Γ stands for the set of assumptions 

 {C → B, T → B,C  T}, and Γ,A stands for Γ  {A}. 
 
Figure 7 presents the same proof as Figure 6, but in a way that emphasizes the contexts used. The 
proof in Figure 7, which includes the  symbol, will remind some readers of the sequent 
calculus. However, it is directly a natural deduction proof with the exact same structure as the 
proof in Figure 6; which only uses a different syntax to denote active assumptions.  

 
Figure 8. B logically follows from the axioms in the brown liquids domain 
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The natural deduction proof is converted to a Bayesian network in the following way. Each non-
atomic formula used in the proof, is the child of its component subformulas, with a conditional 
probability table (CPT) that encodes the main connective introduced or eliminated. For example, 
in Figure 8, the (nodes corresponding to the) atomic formulas C and T are parents of the (node 
corresponding to the) formula (or C T), and the CPT for the family of those three nodes, P((or C 
T) | C, T) is an OR table. The Bayesian network also represents the nonempty contexts (sets of 
assumptions) used in the proof. For example, formula C is the context for the first step of the 
proof, namely the implication elimination with premises C and (if C B) and conclusion B. 
Accordingly, the node corresponding to formula C is a parent of the node Context1 in the 
Bayesian network. In the CPT for a context node, the context is true if and only if all of its 
parents are true.  
 
The construction algorithm just outlined ensures that any possible (i.e., non-zero probability) 
configuration (i.e., assignment of truth or false values) of the variables in the Bayesian network 
that correspond to formulas is a true interpretation (a model) of the formulas that appear in the 
steps of the proof and that no other assignments have positive probability, when the value true is 
entered as evidence for the (nodes corresponding to the) formulas of the theory. Figure 8 
illustrates this, where it is shown that the only state of positive probability of the B variable is the 
one in which B is true, when evidence is entered for (if T B), (if C B), and (or C T). (Evidence 
entered is indicated by red bars in a color version of the figure.) Moreover, for a particular set of 
contexts, the possible configurations are models of the assumptions in the contexts and of the 
formulas. 
 
Now, imagine that we have probabilistic information relating some of the variables in our 
domain of interest. In particular, following our example, imagine a probabilistic causal model is 
available that relates the presence of tea or coffee in my cup to the amount of work I need to get 
done before the end of the workday, as described in Figure 9. We can now compose the logically 
derived model of Figure 8 and the probabilistic causal model of Figure 9 into a single model 
using the Bayesian network fragment composition algorithm described in [1] and obtain the 
combined model of Figure 10. The combined model is a Bayesian network and can be subjected 
to processing as any such network. The most important kind of processing is to compute the 
posterior probability of each variable in the network given a set of findings (i.e., evidence). For 
example, we may be interested in the probability of a deadline given that we observe coffee in 
my cup and that all axioms hold (to meet deadlines we work late and consume coffee to stay 
awake). The posterior probabilities, computed using the commercial Bayesian network shell 
Hugin (www.hugin.com), are shown in Figure 11, where we observe a roughly 64% probability 
of my working on a deadline, which happens to be quite a bit higher than the baseline in the 
model. 

http://www.hugin.com
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Figure 9.  A probabilistic causal model that relates work deadlines to coffee and tea in my cup 

 
 

 
Figure 10.  A model composed from logical and probabilistic components 
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Figure 11.  Probability update in the model of the previous figure 

 
We also want to allow probability update in the presence of information about the probability of 
the formulas in the network. For this purpose, we use BRUSE, a refinement of BC-Hugin, a shell 
that allows the specification of evidence in the form of a set of findings, where each finding is a 
marginal probability on a variable in the network. In this way, one can specify the probability of 
a formula holding in the network. BRUSE computes rather efficiently the posterior distribution 
of the variables in the network with the following properties: the distribution is the closest one 
(according to cross-entropy) to the original one for which (1) all findings hold, and (2) all d-
separation conditions hold. Suppose that, in our example, we add the information that my cup 
may not contain both coffee and tea at the same time. For simplicity, rather than expressing this 
constraint as a logical axiom (￢(C & T)) and converting it into a Bayesian network, we encode 
this information directly in the Bayesian network, as shown in Figure 12. Comparing Figure 13 
with Figure 11 shows that that the probability of working under a deadline given that there is 
coffee in my cup and all axioms hold is about 10% higher than before adding the constraint. 
Moreover, assume that there are exceptions to this rule. Figure 14 shows the result of running 
BRUSE on the network, with the exceptions to the rule quantified at 10%.  Figure 15 shows the 
overall logical and probabilistic reasoning process. 
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Figure 12.  Coffee and tea may not be together in the cup 

 
 

 

 
 

Figure 13.  Probability update in the model of the previous figure 
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Figure 14.  Soft evidential update with a 10% exception rate for the constraint that only one drink 
may be present in the cup 
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Figure 15.  The BALER software process flow, which is supported by the tripartite ontology of real 
world concepts, events, and information sources 

2.5 Causality 

Causality is a special relationship among events for which certain properties hold 
probabilistically.  For example, causality is logically irreflexive and asymmetric, but 
probabilistically transitive.  Causality, like the relation subevents, generates a strict partial order 
among events.  Causal models are very useful, because they allow prediction of the effect of 
interventions [3,5]. Our interest is in a causal Bayesian network. 

A causal Bayesian network consists of a causal graph, a directed acyclic graph (DAG) 
expressing causal relationships, and a probability distribution respecting the independence 
relation encoded by the graph [7].  A link between two nodes in a Bayesian network is often 
interpreted as a causal link. However, this is not necessarily the case. When each link in a 
Bayesian network is causal, then the Bayesian network is called a causal Bayesian network or 
Markovian model. A Markovian model is a popular graphical model for encoding distributional 
and causal relationships. To summarize, a Markovian model consists of a DAG G over a set of 
variables V = {V1; . . . ; Vn}, called a causal graph and a probability distribution over V that has 
some constraints on it. The interpretation of such a model consists of two parts: the association 
of the variables to events and the assignment of probability distributions to the links. For 
causality, variable assignment must satisfy the obvious constraint that 

(Event A causes Event B)  (timeA < timeB) 

Information
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The probability distributions must satisfy two constraints. The first constraint is that each 
variable in the graph is independent of all its non-descendants given its direct parents. The 
second constraint is that the directed edges in G represent causal influences between the 
corresponding variables. A Markovian model for which only the first constraint holds is called a 
Bayesian network, and its DAG is called a Bayesian network structure. This explains why 
Markovian models are also called causal Bayesian networks. As far as the second condition is 
concerned, causality requires that, when a variable is set, the parents of that variable be 
disconnected from it: this is called the excision model of causality. 

In our prototype tool, Magellan, new variables are added to the causal and event portion of an 
analyst’s ontology using Protégé, so that all of the nodes in a Bayesian network fragment are 
represented in a standard and consistent terminology. We extend SUMO with this terminology, 
so that we can take advantage of SUMO’s existing description of general knowledge of the 
world.  Each variable has a set of identifying attributes, which are used to combine fragments 
(fragments can be combined only if their attributes unify) [1,4]. See Figure 16. 

Probabilities are assigned to events in the fragment by performing experiments, estimating 
beliefs, or counting outcomes.  Once assigned, they are updated by conditioning on evidence 
using Bayes rule and the laws of probability.  The fragments are stored in a repository, where 
they can be matched with evidence and combined with other fragments to produce models of 
situations that are as complete, accurate, and specific as possible. 

 

 
 

Figure 16.  Protégé is used to enter the ontology concepts that form the basis for representing 
situations and evidence 
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2.6 Evidence 

Fragments are instantiated by evidence, which we define informally as information (perhaps 
wrong, perhaps incomplete) about what happened (events).  For example, a bank clerk might be 
uncertain whether a money transfer was to a Cairo bank or a Boston bank.  We represent in the 
information source ontology the level of credibility of items of evidence, and provide a Bayesian 
interpretation of credibility.  Formally, we define evidence to be a collection of findings, each of 
which describes the state of a Bayesian network variable, and distinguish three kinds [8]: 
1. A hard finding specifies that the variable has a particular value.  For example, whether or not 

a money transfer occurred or whether or not a suspect is a terrorist 

(Male_TerroristSuspect = true) 

2. A soft finding is a distribution on the states of a variable, usually corresponding to an 
“objective” statistical distribution that is not expected to change within a scenario.  For 
example, there might be an observation that 95% of terrorists are male (and 5% are not), i.e., 

Q(Male_TerroristSuspect)=(0.95, 0.05) 

3. A virtual finding is a likelihood ratio corresponding to the credibility associated to an 
evidence source, such as a witness.  For example, witness Bill might have observed a suspect 
entering a men's-only area of a mosque, which would be interpreted as 4-to-1 that the suspect 
is a male  

L(Male_TerroristSuspect)=(0.8, 0.2) 

Unlike soft findings, virtual findings allow for an update of the posterior probability of the 
evidence variable. 

The relationships among the evidence types are shown in Figure 17. 

 
 

Figure 17.  Evidence consists of a set of findings, which can be of three different types 
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Figure 18.  Magellan’s extended ACH interface is integrated with the ontology of events through 

pull-down menus 
 

Our modified version of the tool ACH2 [6] is used by an analyst to enter the appropriate 
hypotheses and any initial evidence that might be available.  The terminology available to the 
analyst is provided via drop-down menus as shown in Figure 18, where the menu entries are the 
ontology terms from our ontology developed in Protégé.  The resultant Analysis of Competing 
Hypotheses (ACH) [2] matrix is converted automatically into a bipartite Bayesian network, with 
initial probabilities assigned based on the relevance factors assigned to cells of the matrix.  An 
example of the network is shown in Figure 19.  The network is saved into a repository of 
fragments, from where it can be retrieved for matching to evidence. 
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Figure 19.  A Bayesian network fragment constructed automatically from an ACH matrix.  The 
conditional probabilities needed for Bayesian reasoning are derived from the user-entered values 

in the matrix indicating whether or not a finding is consistent with an analyst’s hypothesis. 
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3.0   Use of Tripartite Ontology for Intelligence Analysis 
Figures 20 shows an end-to-end architecture for Bayesian reasoning, which would be used as 
follows.  The process might be triggered by the arrival of evidence in the form of a message, 
such as the following: 

FBI Report Date: 10 April 2003. FBI: Abdul Ramazi is the owner of the Select 
Gourmet Foods shop in Springfield Mall, Springfield, VA. (Phone number 703-659-
2317). First Union National Bank lists Select Gourmet Foods as holding account number 
1070173749003. Six checks totaling $35,000 have been deposited in this account in the 
past four months and are recorded as having been drawn on accounts at the Pyramid 
Bank of Cairo, Egypt and the Central Bank of Dubai, United Arab Emirates. Both of 
these banks have just been listed as possible conduits in money laundering schemes. 

State of 
the World 
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A 

EDC 
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Figure 20.  Magellan architecture for Bayesian Reasoning used to explore an analyst’s hypotheses 

 

Based on such a message, or based on a hypothesized situation that an analyst would like to 
investigate, an appropriate scenario represented as a Bayesian model is chosen by the analyst and 
a corresponding form is displayed listing initial evidence and the domain variables for the 
scenario.  The evidence values for the variables can be supplied automatically from the 
triggering messages, by matching message terms with ontology concepts as shown in Figure 21, 
or can be entered by the analyst.  Because the probabilities of the variables represented in a 
situation are updated to be consistent with the evidence at hand, the situation tracks the variables 
of interest to an analyst.  When the probability of a particular value of a variable of interest 
becomes sufficiently high, an alert could be issued to the analyst. 
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Figure 21.  A small portion of the tripartite ontology indicating how an item of evidence would be 

classified and used to instantiate one or more fragments 
 

Then the Bayesian reasoning component, using a value-of-information calculation, identifies the 
variables that have the most potential impact on the probability profile of a variable of interest.  
(Algorithm 1 in Figure 22 contains the algorithm that we use to calculate the value of 
information for a chosen variable.) That is, it determines which pieces of evidence would be 
most useful in confirming or denying the analyst’s hypothesis.  Such especially informative 
variables can then become the subject of focused queries. A request for this evidence is sent to 
the analyst, who returns the result to the Bayesian reasoner for incorporation into the situation, 
and the likelihood of the analyst’s hypothesis is reassessed.  The process is repeated until the 
analyst decides to stop or there is no more evidence available that changes the plausible 
outcomes. 
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Figure 22.  The Value of Information calculation algorithm used in Magellan. 

 
 

 

 
 

Figure 23.  The Magellan interface showing an evidence message, the ontology concepts it 
contains, the fragments that it instantiates, composed into a situation, and the posterior 

probability for an hypothesis about the situation. 
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Algorithm 1.  Value-of-Information Calculation 

 
• Let V be a variable whose value affects the actions to be taken by an 

analyst.  For example, V indicates whether a bomb is placed on a 
particular airliner. 

• Let p(v) be the probability that variable V has value v. 
• The entropy of V is:  

• Let T be a variable whose value we may acquire (by expending 
resources).  For example, T indicates whether a passenger is a 
known terrorist. 

• The entropy of V given that T has value t is:  

• The expected entropy of V given T is:  

• The value of information is then:  
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4.0     Evaluation 
An early anecdotal evaluation of Magellan was conducted at NIST. The evaluators (three naval 
reservists with a background in intelligence analysis) tested the hypothesis generation aspect of 
the system for four hours. In this test, the analysts were presented with several items of evidence 
(similar to the FBI Report in of section 3) and asked to generate hypotheses, using an interface 
such as is shown in Figure 22. After they had finished, they were shown hypotheses generated by 
Magellan and were asked to rate these hypotheses in comparison to the ones they had generated. 
The NIST summary of the evaluation indicated that the analysts generated more hypotheses than 
Magellan and that Magellan’s hypotheses did not take into account all the possible variables. 
However, analysts’ ratings for Magellan-generated hypotheses are equal to the ratings for the 
analyst-generated hypotheses in 1/3 of the cases. In 7/9 cases the ratings for the Magellan-
generated hypotheses were given mid-level ratings or higher. 
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5.0    Conclusion 
Our work is predicated on the observation that ontologies make it easier for tools to interoperate.  
We have found that our ontologies need to describe both the physical world and the on-line 
information world, because our reasoning system relies on the relationships and links between 
both kinds of domains.  The reasoner, BALER, enables first-order logic sentences to be 
combined with Bayesian networks by generating Bayesian networks for any first-order natural 
deduction proof (that uses the Reeves-Clarke inference rules).  This exploits the complementary 
powers of both logical and Bayesian representations. 

Lessons learned from this project 

• Causality is a complicated relation 

• The probability and logic community is varied and does not accept that Bayesian 
approaches to probability are universally valid; probability intervals and possibilistic 
approaches are valued 

• It is still an open question whether there is a need to support soft evidence in applications: 
virtual evidence may be enough 

• We did not explore the use of soft evidence in models for IA 

• Our approach to translate logic into Bayesian networks is promising, and seems more 
principled than approaches that add probability intervals to description logics 

• The choice of which proofs to translate into Bayesian networks is very difficult, and 
cannot be avoided without introducing enormous computational complexity 

• Composition is harder computationally than expected--better heuristics are needed for 
focusing search. 

 

5.1.1 The Relationship between Proofs and Bayesian Networks 
Our proposal for CASE was motivated by the observations that: 

• Many problems contain both logical and probabilistic aspects 

• Proofs and Bayesian Networks (BNs) are both directed acyclic graphs, sometimes over 
logical formulas, and therefore should be combinable. 

The exact nature of the relationship became clear only after some investigation.  The intuitive 
direction for edges in proofs is from premises to conclusions, but this direction violates 
independence relationships for BNs.  The direction that properly captures independence is to 
direct edges from subformulas to superformulas.  The conditional probability tables (CPTs) for 
the internal nodes are then the simple binary-valued logical connective definitions (in the 
propositional case).  
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5.1.2 Proofs and Theories 
When the superformulas are fully expanded, the proof structure seems to disappear and we seem 
to have constructed BNs from theories rather than from proofs, in which case the proof search 
seems superfluous.  This was observed by peers when we tried to present our work, and we need 
to present examples and use cases which help to clarify the differences.   

• Firstly, any proof is simply a set of subformulas and superformulas; this is brought out 
most explicitly by normal natural deduction proofs as we used in the project.   

• Secondly, the axioms of the theory are not necessarily the largest superformulas; the 
superformulas may need to be synthesized as part of the argument.  This is the explicit 
structure of typical geometry proofs (in which one first builds additional structure beyond 
what was given in the premises so that the total structure may then be analyzed in order 
to deduce properties of the original given structure).  When we choose overly simple 
example problems (as could be handled by prolog, for example) then we fail to highlight 
the role of synthesis in the reasoning. 

• The next point to recognize is that in the case of very large theories, the proofs pull out 
small parts (sub theories) which are sufficient to support the reasoning.  This point 
becomes much more significant in first-order theories, as discussed below. 

5.1.3 First-order Theories 
We started work with propositional proofs because these are easier to think about and represent.  
Of course, BNs handle propositional variables fairly directly, so the real gains come when 
dealing with first-order theories.  There is a wide variety of approaches to extending 
propositional variables to have attributes, but none seem to capture full first order logic 
(especially nested quantifiers).  Our work can be differentiated primarily by its expressivity: we 
do capture full first-order logic.  This part of the theory needs to be verified (I have a sketch of a 
proof that was never finalized in full generality).  Once verified, this feature should be stated up 
front, as some of our peers have had difficulty in understanding some of our goals.  The main 
issue raised in the literature is complexity of updating the networks.  Poole 2003, “First-Order 
Probabilistic Inference”, and de Salvo Braz et al 2007, “Lifted First-Order Probabilistic 
Inference” are probably the most relevant to our work, and discuss complexity explicitly.  We 
should compare complexity.  We should also look more into Markov Logic Networks in order to 
gain a deeper understanding of the relations and differences between our approach and MLNs. 

5.1.4 Semantics 
In order to use traditional Tarski models for formal logic, we interpret P(A) =90% as referring to 
a probability distribution over sampling from possible worlds in which the probability a drawing 
a world in which A is true is 90%.  I believe this comes from Halpern 1990, “An analysis of first-
order logics of probability”, which we should study and cite.  When A is the sentence, “Tweety 
is a bird”, it is hard to imagine what other interpretation might be useful.   

However, when A is the sentence “All birds fly”, then an alternative interpretation is one in 
which possible worlds come with probability distributions, and each satisfying world has a 
distribution P such that P(fly | bird) = 90%.  This second interpretation is discussed in Bacchus 
1990, Representing and Reasoning with Uncertain Knowledge. 
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The first is certainly easier to work with and is fully general over first-order logic formulas, but 
the second might better capture our intuitions in certain situations.  Under the first interpretation, 
we are 90% certain that absolutely every bird flies, but in the 10% likely case that not every bird 
flies, there is no distinction at all between worlds in which no birds fly and worlds in which all 
birds but one fly. 
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7.0 List of Acronyms 
 

ACH…………...Analysis of Competing Hypotheses 

AFRL………….Air Force Research Laboratory 

BALER………..Bayesian and Logical Engine for Reasoning 

BC-Hugin……...Big Clique Hugin 

BN……………..Bayesian Network 

BRUSE………..Bayesian Reasoning Using Soft Evidence 

CASE………….Collaboration and Analyst System Effectiveness 

CLIPS………….C Language Integrated Production System 

CPT…………….Conditional Probability Table 

DAG…………....Directed Acyclic Graph 

FBI……………..Federal Bureau of Investigation 

IA………………Information Assurance 

JESS……………Java Expert System Shell 

MLN……………Markov Logic Network 

NIST……………National Institute of Standards and Technology 

RDF…………….Resource Description Framework 

SILK……………Semantic Inferencing on Large Knowledge 

SUMO………….Suggested Upper Merged Ontology 

SPARQL……….SPARQL Protocol and RDF Query Language 

XMLBIF………..eXtensible Markup Language Bayesian Interchange Format 
 




